Social Ramifications of Autonomous Urban Land Vehicles

Tyler C. Folsom
QUEST Integrated, Inc.
Kent, WA, USA
tylerf@qi2.com

Abstract—Autonomous vehicle technology may arrive much sooner than most people expect and it has profound implications for transportation. The technology facilitates a rail-less personal rapid transit (PRT) system using both public and private vehicles. Road traffic fatalities and injuries may decline by one to two orders of magnitude. A PRT system can provide mobility to the blind, elders suffering from dementia, children and the intoxicated. The system can make use of existing infrastructure, reduce urban sprawl and ease congestion. Autonomous vehicle based systems can improve fuel efficiency. The technology presents a window of opportunity for a new mode of transportation that obtains efficiencies of up to 0.25 l/100 km (1000 mpg equivalent), reducing U.S. petroleum consumption by up to 16%. The U.S. carbon savings could reach the equivalent of 12 trains of 100 coal cars daily.

Keywords: Autonomous vehicles, personal rapid transit, traffic safety, fuel efficiency, mobility, global warming, people mover, pod car.

I. INTRODUCTION

Most of what has been written about the social implications of autonomous vehicles is concerned with military vehicles, particularly aerial vehicles [1]. By contrast, this paper addresses the implications of civilian urban land vehicles. When the military designs land vehicles, it assumes an unknown or hostile environment. If the infrastructure instead cooperates with the vehicles and the routes are fully known, autonomy becomes much easier.

Autonomous land vehicles are coming, yet they are not on the radar screens of most transportation planners. Few people could foresee the effects of the Internet 30 years ago. It is likely that autonomy will have a similarly disruptive effect on 30-year transportation plans. The World Conference on Transportation Research Society (WCTRS) recently released a report on whether global transportation sustainability is possible by 2050 [2]. They did not consider the effects of autonomy. Google has driven autonomous cars over 140,000 miles in traffic with only occasional human control and 1000 miles with no intervention [3]. It is inconceivable that this technology will not be deployed within the next 40 years.

Autonomous commuter trains have been in operation since 1983. Autonomous technology can be expected to be extended to buses, cars and light vehicles. We can expect to see improvements in driver assistance systems for smart cruise control, parking, bus and truck docking, lane following and accident avoidance. Instrumentation improvements to both infrastructure and vehicles will increase the intelligence of transportation.

There are many forms that automated transportation could assume. The prevailing assumption is that it will provide incremental improvements to existing transportation modes. In a companion paper, I argue that an entirely new mode of urban transportation is possible that is neither car nor bus nor motorcycle [4]. There are many other designs that can accomplish similar objectives. Whichever outcome materializes, there will be profound effects on society. These effects include morbidity, health care burden, energy consumption, urban design, economics and accessibility of transportation. This paper examines some of these consequences. Their extent is dependent on the shape of transportation automation. The greatest effects on energy reduction come when the infrastructure, vehicles and their operation form a system optimized for that purpose.

If deployment of transportation automation is haphazard, the beneficial effects will be reduced. A unified system will not happen until a wide swath of the population becomes aware of the possibility and demands it. As technologists, it is up to us to educate planners, politicians, industrialists and the general public about what could be. As autonomy becomes a real option, there is a transition window of a few years offering a chance for shrinking the prevalent vehicle size and improving fuel efficiency.

In the next 5 to 15 years, driving one's own car will start to disappear. The technology is on hand to let the car drive itself [5]. Cars that can drive themselves can easily be put under the control of a traffic management computer, which can greatly reduce accidents and congestion.

There are three levels of vehicle automation:

1. Improved driver assistance.
2. Autonomy only on a reserved roadway separated from other vehicles.
3. Full autonomy on city streets.

The first level is happening now. I estimate that the second level could be in place within six years and the third in ten to twenty.
II. Safety

A. Traffic Accidents

Automobiles are so common in our lives that we seldom think of their danger. In the U.S. in 2007 there were 37,248 fatal crashes resulting in 41,059 deaths. These included 21,647 drivers, 8,657 passengers, 5,154 motorcyclists, 4,654 pedestrians and 698 bicyclists [6].

In 2006, U.S. motor vehicle traffic-related injuries resulted in 43,664 deaths [7]. This compares to 30,896 deaths from firearms injuries, 17,034 from homicides and 0 from terrorism [8]. There were 2,575,000 traffic injuries at an estimated economic cost of $230 billion [6].

For 2003-2007, deaths in California traffic alone exceeded American deaths in the Iraq war in each of four age groups between 18 and 50 [9]. For the 20th century, 667,701 American troops have died at war and 3,070,325 Americans have died on our roads [10,11].

Worldwide, an estimated 1.18 million people died from road traffic crashes in 2002 [12]. This accounts for 2.1% of all global deaths and ranks as the eleventh leading cause of global deaths. Between 20 and 50 million people are injured each year from road crashes. Projections indicate that road traffic injuries could reach third place as a global burden of disease and injury by 2020 [12].

In 2006, alcohol was involved in 41% of U.S. fatal crashes and 1.46 million arrests were made for driving under the influence of alcohol or narcotics [6]. The United States has tried prohibiting both, but people continue to use them and when they do, driving home is the most convenient choice. Driving while intoxicated is a structural feature of the automotive transportation paradigm and there is no hope that it will ever be eradicated through education or coercion.

In head-on crashes between SUVs and passenger cars, five passenger car occupants die for every SUV death [13]. This results in an arms race, where people buy a heavier car than they need based on perceived safety. The weight bloat could be broken by segregating motorcycles and light passenger cars from heavier vehicles. A rapid transformation to light vehicles could happen if autonomous vehicle guideways were designed for light vehicles alone, with heavy vehicles physically incapable of operating on these guideways.

B. A Rail-less PRT

Personal Rapid Transit (PRT) was designed in the 1970s, but the first PRT system was only recently deployed. PRT is based on small vehicles, each carrying one to six people. There are no schedules. Vehicles are autonomous, run on reserved guideways and are available on demand. They typically run on rails and take the most direct route from origin to destination without stopping at intermediate stations. Every station is offline, with a short side track connection to the main line [14].

An autonomous road vehicle can be operated as a rail-less PRT. The "rail" becomes a line painted on a paved roadway. Robot line-following is a standard technique and can be done with a simple camera or light sensor. The painted "rail" enables much faster switching times than steel rails. Fast switching time decreases the spacing required between vehicles and thus increases system capacity. On a PRT system, all vehicles operate on the main line at full design speed. There must be no intersections. Thus a freeway lane, barricaded from other vehicles, can become a PRT guideway.

C. Autonomous Vehicle Safety

A system of computer controlled vehicles is likely to have safety characteristics more similar to autonomous trains than to individually controlled motor vehicles. It is instructive to examine the safety record of autonomous trains.

In France, an autonomous commuter rail system has been operating in the city of Lille since 1983. During peak periods, the trains run on headways of one to two minutes [15]. This system is organized in two lines, includes 60 stations, extends over 45 km and carried 86 million passengers in 2007 [16]. It has a peak speed of 80 kph and its average speed is 32 kph. The system has been replicated in Jacksonville, Paris, Toulouse, Chicago and Taipei [17].

In 2005 and 2006 there were no deaths on the Lille metro or any other metro in France. The total number of injuries for 27 metro lines throughout France were 22 in 2005 and 26 in 2006 [18]. We can thus estimate an annual accident total for the two Lille metro lines of no deaths and two injuries. Lille is the largest city of the Nord Département, a region of 2,554,449 inhabitants. For 2007 there were 2,657 motor vehicle injury accidents in the region resulting in 103 deaths and 3,407 injuries [19].

To make a rough comparison of the accident rates of motor vehicles to those of an autonomous vehicle system, note that there are 40 million cars and trucks in France out of a population of 61.6 million [20]. Assuming the same ratio in the Lille region predicts 1,659,000 cars there. The French automobile occupancy rate is 1.8 [21]. French urban residents typically make 3.5 to 4.0 trips per day [22]. The upper figure yields an estimate of 4.36 billion drivers and passengers using motor vehicles yearly, which is 51 times as many as metro passengers. The non-fatal injury ratios would be expected to be similar. Instead, the ratio is 1700:1. We can thus conclude that motor vehicles are 33 times as dangerous as autonomous trains on a reserved path. Metro accidents will happen, but when they do, they are news. Car accidents rarely make the national news.

This calculation is consistent with the finding that travel by rail is more than an order of magnitude safer than road travel. Data for death rates from different travel modes are given in Table 1 [23].

Vancouver, Canada has been operating the autonomous Skytrain since 1986 with 133,000 weekday passenger trips in 1994. A study of accident rates in 1995 gave identical statistics for the Lille and Vancouver systems of 2.8 incidents, 0.0 deaths and 0.0 injuries per 1,000,000 vehicle revenue km [24]. Table 2 shows that these autonomous train systems are considerably safer than Light Rail Transit (LRT) or Rapid Rail Transit (RRT) systems. By contrast, the U.S. motor vehicle accident rate for the same period was 2.726 deaths and 330.3 injuries per 1,000,000 km [6]. Using the U.S. average number of
persons per vehicle of 31.3 for commuter rail and 1.57 for cars. One could compute relative safety estimates per person [25]. Such statistics would be misleading, since they compare different countries. It is sufficient to note the indication that autonomous vehicles produce a safety advantage of orders of magnitude.

Table 1. Death risks for different travel modes in the EU for 2001/2002

<table>
<thead>
<tr>
<th>System</th>
<th>Deaths / billion person km</th>
<th>Deaths / billion person travel hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>0.35</td>
<td>20</td>
</tr>
<tr>
<td>Road (total)</td>
<td>9.5</td>
<td>280</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>138</td>
<td>4400</td>
</tr>
<tr>
<td>Cycle</td>
<td>54</td>
<td>750</td>
</tr>
<tr>
<td>Foot</td>
<td>64</td>
<td>250</td>
</tr>
<tr>
<td>Car</td>
<td>7</td>
<td>250</td>
</tr>
<tr>
<td>Bus</td>
<td>0.7</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. Transit safety (Per million vehicle revenue km)

<table>
<thead>
<tr>
<th>System</th>
<th>Incidents</th>
<th>Injuries</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lille</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LRT systems</td>
<td>39.3</td>
<td>30.5</td>
<td>0.1</td>
</tr>
<tr>
<td>RRT systems</td>
<td>12.4</td>
<td>11.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

III. OTHER EFFECTS

In addition to a huge improvement in traffic safety, the transition to autonomous vehicles will have numerous other effects. Total computer control of personal transportation topples many barriers.

A. Greater Access to Transportation

Some disabilities, such as blindness, preclude driving. A fully autonomous vehicle only requires the rider to be able to select her destination. It thus opens new horizons to individuals who currently need to depend on others for their transportation.

Dementia can occur with aging. When it does, it produces a situation where an elder becomes an unsafe driver. This can result in injury or death to the driver or others. Individuals must either be capable of recognizing the situation and surrendering their driver's license or doctors or relatives must force this outcome. This is a stressful time for everyone involved. Loss of mobility isolates elders. With autonomous vehicles, there is no need for elders to lose mobility. Prime candidates for the first small scale autonomous vehicle systems may be retirement communities.

At the other end of the age spectrum, autonomous vehicles grant greater mobility to children. Parents or teachers can set a non-overrideable destination. School buses would become obsolete. Parents would no longer need to be chauffeurs to deliver their children to sporting events or after school activities. This could have the negative effect of decreasing the involvement of parents in their child's activities.

Autonomous vehicles provide safe and convenient transportation for the inebriated. A computer controlled system may be the only effective solution to drunk driving. In some ways, this is similar to the pre-automotive age in which a horse could find its way home with minimal assistance from the rider.

B. Public Transportation

The proposed system incorporates both public and private transportation. When a city decides to install a level 2 system (autonomous only on restricted lanes), the city sets up the lanes and buys thousands of public vehicles. This is the same paradigm that a city would use to install a light rail system. The public vehicles must be boarded only at stations adjacent to the entry ramps for the restricted lanes. Disembarkation would be similarly limited.

The stations at the entrances to the automatic lanes could have gated entries to admit private vehicles. A private vehicle wishing to operate on the restricted lane would have to pass a stringent test demonstrating its ability to operate under computer control and be completely compatible with the public vehicles. The vehicle is then issued an encrypted code which it presents to the electrical gateway and is allowed to operate on the system under computer control. After passing the gate, all manual control of the vehicle is physically disabled. After the vehicle exits from the system, manual control is restored at an exit gate.

This design fills the gaps at the closest station to the trip origin and the closest station to the destination. A single private vehicle makes the entire journey. It operates under manual mode on city streets at either end and autonomously in the middle. The existence of the public system gives people an incentive to buy their own vehicle for a new mode of transportation. As the number of private vehicles increases, the city's share of system cost decreases.

In our current transportation system, a private car is much more convenient than a public bus. In the proposed transportation system, public transportation may be more convenient than private transportation. Both modes would be based on small driverless vehicles. Either mode is available on demand. Both travel at the same speed on the most direct route. When level 3 (full autonomy) is reached, a public vehicle can be summoned by a phone call. A private vehicle is either boarded where it was parked, or if that is too distant, summoned by a phone call. Public transportation resembles a fleet of driverless taxicabs. Maintaining one's own vehicle carries the problem of finding parking for it.
C. Liability

Liability issues are an important consideration in the introduction of autonomous vehicles. As the driver becomes less important, liability may shift from the driver to the manufacturer, providing a disincentive to hybrid driver / computer assistance systems [26]. A system that has no dependency on the driver may produce less legal exposure for manufacturers. Nonetheless, liability concerns may slow the introduction of autonomous vehicles in the United States.

Concern with liability is less important in other countries. The system may be deployed in China before it is accepted in the United States. China is the world’s leading producer and consumer of electric vehicles, most of which have two wheels [27]. China is committed to electric vehicles and the system envisioned in this paper would be a good fit to China. With 100 cities of a million people or more, China has a strong need for transportation and is an attractive market.

If liability were not a consideration, the people mover system could be designed and manufactured in the United States and exported to China. Legal barriers to acceptance of autonomous vehicles in the U.S. could make trade go the other way, with the effect of more green jobs going to China.

D. The Urban Landscape

A typical U.S. suburban business district devotes an enormous amount of land to parking. This causes cities to sprawl. The large area of impermeable surfaces leads to increased runoff following storms. Surface water runoff has been identified as the prime contributor to decline of water quality in Puget Sound [28]. This in turn leads to declining populations of salmon, orca whales and other marine life.

Parking lots are built to accommodate peak demand and during a 24 hour period are rarely full. With an autonomous system, fewer vehicles are required. A public vehicle can deliver a rider to her destination, then drive itself to the next person requesting transportation. Less parking is required for autonomous vehicles. A private vehicle can drop the rider at his destination and then drive itself several kilometers to park.

When full autonomy on city streets is possible, deliveries can be made without a driver. This could have a major impact on restaurant food delivery.

E. Reduced Congestion

Manual driving requires space between vehicles for driver reaction time and brake application time in emergencies. In an autonomous system, there is no driver and thus cognition time is a few milliseconds. All vehicles are under computer control and have access to the state of the vehicle ahead. A trailing vehicle knows that the lead vehicle is about to slow, accelerate or turn before the action is undertaken. Automated transportation allows the safe following distances between vehicles to shrink. Vehicles can operate in platoons. This has an effect on highway capacity, increasing it by three to eight times [29]. The ultimate vehicle spacing of zero may be achievable if a physical coupling device can be perfected. It could thus be feasible for vehicles to operate bumper to bumper at full speed.

Driver error is eliminated as an accident cause. Remaining accident causes would be system malfunctions or physical mishaps such as flat tires or ice or debris on the roadway. Such occurrences may be mitigated by vehicles physically coupling four lanes can fit in the space required for a single freeway lane or railroad track. Thus congestion is reduced and the result may be that no new urban freeway lanes need to be built.

In a fully automated system, vehicles on the main line always travel at design speed. A vehicle changes its speed only on exit or entry ramps. Vehicles entering the system will be precisely timed so that they have a free spot into which to merge. If the system saturates, no new vehicles will be admitted, but those on the system continue at full speed. Any interchanges would be served by parking buffers so that vehicles changing routes always have a space available for merging.

IV. Fuel Efficiency

Computer control of vehicles allows decreased following distances. As vehicles travel in the slip stream of those ahead, fuel consumption goes down. This effect can be particularly dramatic for freight trucks, which average only 39 l/100 km (6.0 mpg) [30]. Greater efficiency could also be obtained by increased use of rail systems to move freight.

The power required to move a vehicle is the sum of energy changes needed to overcome rolling resistance (W_R) and aerodynamic drag (W_D) which are given in (1) and (2) [31].

\[dW_R/dt = \frac{C_V \eta}{\Sigma} m \cdot g (C_R + a/g + A \rho (C_V + C_W)^2) \] (1)

\[C_V: \text{Speed of vehicle} \]
\[\eta: \text{Overall mechanical efficiency of transmission} \]
\[\Sigma m: \text{Total mass of vehicle, rider and baggage} \]
\[g: \text{Gravitational acceleration} \]
\[C_R: \text{Coefficient of rolling resistance} \]
\[a: \text{Vehicle acceleration} \]
\[m_w: \text{Effective rotational mass of wheels} \]

\[dW_D/dt = 0.5 C_V \eta C_D A \rho (C_V + C_W)^2 \] (2)

\[C_D: \text{Aerodynamic drag coefficient} \]
\[A: \text{Frontal area of vehicle and rider} \]
\[\rho: \text{Air density} \]
\[C_W: \text{Headwind} \]

To minimize the energy expended against rolling resistance, one can reduce vehicle mass, speed, starts and stops and avoid hills. The automated design minimizes starts and stops. The most effective variable would be the mass. The model T Ford weighed 545 kg and had a 15 kW engine [32]. In 2003, EPA reported that the average U.S. car weighed 1820 kg [33]. The average American male weighs 86 kg [34]. Reducing total mass from 1900 kg to 190 kg reduces rolling weight power consumption ten times. With the computer controlling all vehicles, accidents become rare and the **SUV has almost no safety advantage over a motorcycle.** An autonomous vehicle system could be an opportunity to build a transportation system around motorcycle sized three- or four-wheeled vehicles.
The other power consumer is aerodynamic drag, which is critical for light vehicles. For a car, the cross-over point between the dominance of rolling resistance and drag comes at about 60 kph. For a bicycle, the cross-over point is at 20 kph [35]. Drag can be decreased by streamlining the vehicle and minimizing frontal area. Eliminating headwinds by enclosing the guideway in a tube and inducing tailwinds further reduces drag. However, the most critical variable is vehicle speed. If the design speed were cut from 100 kph to 50 kph, the aerodynamic power requirements fall by a factor of 8. A light rail vehicle designed to travel at 100 kph has an effective speed of less than 50 kph when stops at stations and passenger wait times are included. Thus a PRT vehicle traveling at a constant 50 kph is faster than the train. Automobiles seldom travel at full speed in congested urban conditions.

The vehicle that minimizes power consumption looks like a three wheeled recumbent motorcycle enclosed by a streamlined body. It might be 0.8 m wide, 1.2 m high and 3 m long. A two person version might double the length. These pod cars would be primarily designed for commuting. If used by a family or group, several pods can be electronically linked to each other and function as a single vehicle. A shopper can slave a second vehicle to carry purchases.

Energy consumption can be reduced by a factor of 10 beyond what the automotive industry has in mind. Fuel efficiencies of 0.5 to 0.25 l/100 km (300 to 1000 mpg equivalent) are possible when the entire system is designed for that objective. Table 3 gives the energy requirements per person of various vehicles [35].

Table 3: Energy consumption at 50 kph (MJ/km/person)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>One person pod car</td>
<td>0.046</td>
</tr>
<tr>
<td>Bicycle</td>
<td>0.126</td>
</tr>
<tr>
<td>Train and riders</td>
<td>0.469</td>
</tr>
<tr>
<td>Car and five riders</td>
<td>0.502</td>
</tr>
<tr>
<td>Car and driver @ 6.2 l/100 km</td>
<td>2.26</td>
</tr>
</tbody>
</table>

Any discussion of fuel efficiency must reference the speed. Typical power required for a pod car to maintain speed is shown in Figure 1. This assumes level ground, no acceleration and a total mass of 200 kg. Fuel efficiency is related to the power expended.

The winner of the 2006 Supermileage event held by the Society of Automotive Engineers (SAE) was a student team from the University of British Columbia. They achieved 0.075 l/100 km (3145 mpg) in a gasoline powered vehicle, apparently at speeds of 20 kph [36,37]. The fuel efficiency would not be as good at 50 kph but it is difficult to estimate an approximate mileage at that speed.

In 1980, Douglas Malewicki achieved 1.5 l/100 km (157 mpg) from a faired three-wheel motorcycle driven on California freeways. The vehicle weighed 105 kg and was powered by a 1900 W gasoline engine [38]. The mileage can be expected to improve at lower speed.

An electric pod car has driven 100 km in one hour. Energy efficiency was 9.5 W hr/km or 0.11 l/100 km (2200 mpg) at freeway speed [39].

Most major automobile manufacturers have plans for an electric or plug-in hybrid vehicle. Electric cars are more efficient than gasoline cars and can travel farther on equivalent amounts of energy. However, the energy density of gasoline is much higher than what can be achieved with batteries. Electric cars may carry 500 kg of batteries and thus weigh more than a gasoline car. Since pod cars are light and do not require extended range they are ideal candidates for electric power. A lithium ion battery weighing 10 kg or less should be sufficient to provide 30 km of range. A light battery makes it practical to refuel by swapping batteries.

In 2009 the U.S. consumed 18,771,000 barrels of oil per day, with 52% coming as imports and 9 million barrels going to motor gasoline [40]. Total vehicle kilometers were just under 5 trillion, with 65% classified as urban and 35% as rural [41]. Thus urban transportation accounts for 6 million barrels of oil per day.

In 2001, trips to the workplace accounted for 19% of U.S. personal travel distance [42]. The largest sector was social and recreational trips, accounting for 30%. Family and personal business accounts for 19% and shopping for 14%. The typical driver makes 3.35 trips per day, totaling 52.7 km. The average trip to work is 19.5 km and takes 25.5 minutes, which is an average speed of 45.9 kph. These trip lengths are solidly within the range that the proposed system is designed to handle.

At full deployment, the people mover might replace half of U.S. urban motor vehicle trips. About 3 million barrels of oil per day would be replaced by the energy needed to run the pod cars, which would come from electricity. This accounts for 16% of U.S. oil consumption or 31% of U.S. oil imports.

The pod cars can be run from electricity, which in the best case scenario come from renewable resources. In the worst case, the electricity is generated from coal. Assume that the pod...
cars require one tenth the energy of the cars that they replace. Replacing one-tenth of 3 M barrels of oil by the equivalent energy from coal produces carbon savings of 146,000 metric tons daily. This is equivalent to 12 trains of 100 coal cars.

V. CONCLUSION

A properly designed urban people mover system based on autonomous light single occupancy vehicles has numerous advantages. In the U.S. alone it could save thousands of lives annually and free billions of dollars spent on caring for victims of traffic accidents. Its convenience could surpass the automobile and provide mobility to people who are unable to drive. It can reduce urban congestion, sprawl and impervious surfaces since fewer freeway lanes and parking lots would be required. Wide scale acceptance could reduce U.S. oil consumption by 16% and eliminate 146,000 metric tons of carbon daily.

The advantages of the people mover system call for a serious development program by either a private company or a national government. On May 25, 1961, President Kennedy set the goal of landing a man on the moon by the end of the decade. By July 20, 1969, the dream was reality. A similar effort could put people mover systems in place in a similar time frame. The annual cost of the Apollo program was $18 billion in 21st century dollars [43]. By contrast, the 2009 budget of the U.S. Federal Highway Administration was $42 billion [44]. Widespread implementation of traffic automation would be a relatively modest investment. How big a chunk could it take out of the $230 billion cost of traffic accidents? The payoffs from developing people mover systems could exceed those from the space program.

REFERENCES

[2] WCTR (World Conference on Transportation Research Society) Putting Transportation into Climate Policy Agenda, 16th Conference of the Parties to the UNFCCC, Cancun, Mexico, 2010.
[15] Personal communication at Transpole Control Center, Lille, France, July 2008
[22] M.O. Gascon, Enquestes de mobilitat com a eina per a l’anàlisi i la planificacio, Sabadell, Spain, 2007.